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Abstract Software applications often receive a large number of enhancement requests
that suggest developers to fulfill additional functions. Such requests are usually
checked manually by the developers, which is time consuming and tedious. Con-
sequently, an approach that can automatically predict whether a new enhancement
report will be approved is beneficial for both the developers and enhancement sug-
gesters. With the approach, according to their available time, the developers can rank
the reports and thus limit the number of reports to evaluate from large collection of
low quality enhancement requests that are unlikely to be approved. The approach can
help developers respond to the useful requests more quickly. To this end, we propose
a multinomial naive Bayes based approach to automatically predict whether a new
enhancement report is likely to be approved or rejected. We acquire the enhance-
ment reports of open-source software applications from Bugzilla for evaluation. Each
report is preprocessed and modeled as a vector. Using these vectors with their cor-
responding approval status, we train a Bayes based classifier. The trained classifier
predicts approval or rejection of the new enhancement reports. We apply different
machine learning and neural network algorithms, and it turns out that the multinomial
naive Bayes classifier yields the highest accuracy with the given dataset. The proposed
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approach is evaluated with 40,000 enhancement reports from 35 open source applica-
tions. The results of tenfold cross validation suggest that the average accuracy is up
to 89.25%.

Keywords Software enhancements · Machine learning · Multinomial naive Bayes ·
Document classification

1 Introduction

New feature enhancements to software applications are inevitable. Software has to
fulfill user needs, and these requirements change over time. Hence new feature
enhancements become necessary for success of the software due to evolving user
requirements and changing technologies (Rajlich 2014). Development of newer ver-
sions of a an application also requires new or improved feature enhancements. A
non-trivial software therefore receives a number of suggestions about adding new
feature enhancements and improving the existing ones. To request an enhancement
in a software application, the suggester writes a report to describe the enhancement.
In issue tracking systems, feature enhancement requests are taken as a special kind
of issue reports. Consequently, enhancement requests are often called enhancement
reports as well.

The empirical study of the issue reports statistics shows that the enhancement
reports form a sizable portion of the total issue reports filed for an application. We
observed the statistics for Thunderbird product between 2000-01-02 and 2005-12-24,
in which out of 10,000 bug reports, 1857 reports were enhancements, which account
for 18.57% of all types of issue reports. This statistics suggests that enhancement
requests represent a meaningful number of all issue reports and a non-trivial software
application is subject to a number of enhancements.

Not all of the enhancement reports will finally be approved. By analyzing the
enhancement reports from the 35 applications we find that around 75% of the reports
are not approved. The problem of low quality reports which leads to rejection of these
reports, often arises because the enhancement reporters are not fully aware of the
history, environment, functionality and technological limitations associated with the
software. This leads to the mismatch between what the developers expect and what
the reporters provide (Zimmermann et al. 2010). Consequently, the reporters end up
proposing poorly written enhancement reports and the software maintainer ends up
evaluating many enhancement reports that are not fixable thus wasting his time and
efforts.

Although, the developers have to ultimately evaluate the reports manually before
assigning and implementing the enhancements, there are benefits of having an auto-
mated approach:

1. First, it can help developers respond to useful enhancement reports quickly. Sizable
software applications often receive a large number of enhancement reports, among
which only a small partwill be adopted. Itmay take a long time for the developers to
read and respond to such a large number of reports. As a result, some important and
useful enhancement reports cannot be handled in time. However, if an automated
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approach can rank the reports and help developers to pick up a small number of
reports that are most likely to be approved, such more valuable reports could be
handled promptly.

2. Second, it can help reporters to improve their enhancement reports before submis-
sion. By using the automated system, the suggesters can get an idea of whether
the recommended enhancement is likely to be approved or not and hence be able
to rework the request before submission. This would in turn translate into less but
better quality enhancement reports.

To this end, we propose a supervised machine learning based approach to auto-
matically predict the approval of software enhancement requests. The acquired
enhancement reports are preprocessed to lower-case the reports’ description text,
remove non-dictionary words, and lemmatize the words. The lemmatized words are
used as features to model the description text of reports as feature vectors. A portion
from the set of feature vectors corresponding to the enhancement reports text are used
to train a supervised learning classifier. The trained classifier is tested on a differ-
ent portion of reports from the feature vectors set to evaluate the performance of the
approach.

Machine learning based approaches have successfully been applied in classifying
different kinds of software documents. Approaches on the software issue reports have
been used in software bugs classification (Roy and Rossi 2014b; Herzig et al. 2013;
Gopalan and Krishna 2014). These approaches have solved the problem of predicting
issue reports as bug or non-bug (Sohrawardi et al. 2014) and duplicate bug report
classification (Banerjee et al. 2012; Sun et al. 2011; Lin et al. 2016) using the machine
learning algorithms. Popular classification models used in bug handling include deci-
sion tree, support vector machine, naive Bayes and neural networks (Lamkanfi et al.
2010). Lamkanfi et al. (2011) proposed an approach to help developers distinguish
severe bugs from non-severe and to resolve them first. The authors compared the per-
formance of different machine learning algorithms in severity prediction and conclude
that naive Bayes multinomial outperforms the other algorithms on their dataset. The
approach scales down multiple levels of severity into two classes; severe and non-
severe, classifying new bug reports into one of these two categories. Based on these
applications and effective performance of the Bayes based and support vector machine
models, we include these classifiers in evaluation of our approach.

Wang et al. (2008) applied natural language processing techniques to suggest a
list of most similar existing reports to the new report. The technique for duplicate
issue detection using the similarity measures of word frequency has shown effec-
tive performance (Lazar et al. 2014). These solutions save the developer time and
improve efficiency. The approaches to solve such problems have shown high accuracy
in predicting bugs severity, bug or non-bug classification and duplicate bug report iden-
tification. Duplicate enhancement requests for an application account for a noticeable
portion in the total reports set, but since there have already been a number of studies
on duplicate detection, we do not specifically deal with this problem in our study.

A number of important studies and approaches to triage and automate tasks specif-
ically for non-enhancement type bug reports have been conducted and achieved
significant performance. The existing applications of machine learning algorithms
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on software issue reports that use textual features (Sohrawardi et al. 2014) support
the practicality of these algorithms to predict the approval of software enhancement
reports. However, to the best of our knowledge, there is no existing approach specifi-
cally targeted to predict the approval of the enhancement reports.

The proposed approach is evaluated with 40,000 enhancement reports from 35
open-source software applications. The results of tenfold cross validation suggest that
the approach is accurate. The Bayes based approach averaged precision, recall, and
f1-score of 84.99, 63.26 and 72.53% respectively. We further compare the approach
with re-sampling of the dataset since a large proportion of reports are rejected which
makes the dataset imbalanced. The results of re-sampling suggests that the overall
performance does not improve by under-sampling the dataset.

The major contributions of this paper include the following:

– An automatic approach to predict the approval of new enhancement reports.
– Evaluation of the approach with data from open-source applications. Evaluation
results suggest that the approach is accurate.

Rest of the paper is organized as follows. Section 2 discusses related work. Section
3 presents the proposed approach. Section 4 details the experimental setup, evaluation
and results. Threats to validity and the limitations are discusses in Sect. 5. Finally,
Sect. 6 concludes the paper and discusses future work in this direction.

2 Related work

2.1 Machine learning based bugs classification

For text based document classification problem where manually categorized history
data is available, a range of supervised machine learning classification models can be
used (Murphy and Cubranic 2004; Pingclasai et al. 2013). These classifiers categorize
the text documents into predefined classes by building a classification model from
history data. The naive Bayes classifier is one of the best text classification algorithms
(Hu et al. 2014;Wu et al. 2008), which is a probabilistic learning model. The classifier
assumes all the features are fully independent in a given class (Wang et al. 2014).
The classifier simplifies learning with this assumption and often produces results
comparable to the sophisticated classifiers. Support vector machine is one of the most
popular text classification models (Hu et al. 2014). The classifier is a predictive model
for the classification problems. Support vector machine classifier categorizes the input
data into two classes by determining a hyper-plane that maximizes the separation
between the classes (Schölkopf and Burges 1999).

Such accurate and efficient machine learning classifiers make it possible to classify
the enhancement reports. These effective classification algorithms provide the basis
for our approach. A binary text classifier assigns either of the two classes to each text
document. Some of the applications of binary classifiers include the Spam content
filtering for emails (Gad and Rady 2015; Santos et al. 2012; Zhang et al. 2014), SMS
(Delany et al. 2012) and social media (Jin et al. 2015).
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2.2 Automated processing of software issue reports

Machine learning based approaches have successfully been applied in automatically
processing different kinds of issue reports. Some of these approaches include issue
severity assessment, duplicate issue identification, bug and non-bug detection, auto-
matic identification of files containing bugs and ranking relevant developers to fix
a bug. Some of these tasks are influenced by the background and experience of the
developers and automated tools can help save the time and efforts.

2.2.1 Severity assessment

Severity of an issue report is important decision factor in software development and
maintenance. It helps proper resource allocation and planning for bug fixing and test-
ing. To automatically assess severity of software defect reports, (Menzies et al. 2008)
proposed SEVERIS, a tool that uses text mining and machine learning techniques to
predict severity of defect reports. The systemwas case studied with data fromNASA’s
Project and Issue Tracking System (PITS). SEVERIS employs text mining techniques
to extract the features of bug reports, while supervised machine learning is trained on
the classifications of existing reports and then assign appropriate severity levels to new
reports. Lamkanfi et al. (2011) and Roy and Rossi (2014a) applied the machine learn-
ing techniques to predict the severity of issue reports on three open-source projects.
The goal was to classify the severe and non-severe bugs. They applied naive Bayes
based algorithms to predict the bug report severity. According to their study, the naive
Bayes produced optimal results and is therefore a suitable binary classifier to classify
the bug reports.

2.2.2 Issue classification and bug localization

The problem of bug report misclassification was identified by Antoniol et al. (2008)
to distinguish two types of bug reports. The authors built three classifiers using deci-
sion trees, naive Bayes and logistic regression to distinguish bugs from non-bugs on
Mozilla, Eclipse and Jboss projects, with a precision ranging from 77 to 82%. Ping-
clasai et al. (2013) proposed the topic modeling approach to classify the bug reports
using three classification methods of decision tree, naive Bayes classifier and logistic
regression to get the most accurate model. The results suggested that the naive Bayes
classifier was the most accurate and efficient classification model.

The problem of automatically locating the source code files that need to be changed
in order to fix the bugs has been addressed by Zhou et al. (2012). They propose
BugLocator, an information retrieval based method to rank the files using the textual
similarity between the initial bug report and the source code that uses the information
about similar bugs previously fixed. The approach uses revised Vector Space Model
that uses document length and similar bugs solved before as new features. Xuan and
Ming (Xuan et al. 2017) further studied the problem of automatically locating potential
buggy source files, proposing a LS-CNN model that enhances the unified features by
exploiting the sequential nature of source code. Based on a bug report, the proposed
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model combinesCNNandLSTM to extract semantic features to automatically identify
potential buggy source code.

2.2.3 Automatic bug assignment

The bug assignment is the problem in which a reported bug requiring resolution, needs
to be assigned to a developer to resolve the bug. Automatic approaches for assignment
or tossing of the bugs reports to developers have been extensively studied (Anvik
2006; Bhattacharya et al. 2012; Jeong et al. 2009). Anvik et al. (2006) proposed a
semi-automated machine learning based algorithm for the assignment of reports to
relevant developers. The algorithm learns the kinds of bugs each developer resolves
from the bug repository and builds a classification model. For a new bug report,
the classifier short lists a small number of relevant developers to resolve the bug,
achieving a precision levels of 57 and 64% on Eclipse and Firefox respectively. A user
activity profile based bug report assignment technique was proposed by Naguib et al.
(2013) to assign a bug to appropriate developer. In their formulation, user profile for
every developer is generated based on his activities including reviews, assignment and
resolutions that suggest the developer’s expertise and involvement in the project.

2.2.4 Duplicate issue detection

Bug reporting is often prone to duplication. For a newbug report filed, there are chances
for another similar bug report already present in the system, describing the same
problem. Such similar bug reports are classified duplicates of each other. Duplicate
bugs consume valuable time of developers while being difficult to pinpoint when the
subject application is sufficiently large with a huge number of issue reports. Manually
going through the pile of existing reports to detect duplication is tedious. In this study,
we do not specifically handle this problem as

(1) Duplicate issue detection usually requires measuring similarity of an issue report
with the collection of already existing reports and ranking most similar issues.
Since this approach is different from our machine learning based approach, we
only address whether a new report would be approved or rejected.

(2) The problem to detect duplicate issue and rank similar issue reports has been
covered by a number of approaches (Banerjee et al. 2012; Thung et al. 2014;
Hindle et al. 2016). These approaches have shown better performance and hence
can be leveraged in the domain of enhancement reports.

TakeLab system (Saric et al. 2012) automates semantic similarity measure of short
text documents using supervised machine learning. Using the TakeLab system, Lazar
et al. (2014) presented an improved method to detect duplicate bug reports that uses
textual similarity features.

Sun et al. (2011) proposed FactorLCS technique that takes into account the sequen-
tial order of the words to detect duplicate issue reports. Enhanced support vector
machine model approach using the manifold textual and semantic correlation features
is proposed by Lin et al. (2016) for duplicate bug detection. The approach achieves
improvements between 2.79 and 28.97% in evaluation. Tian et al. (2012) measured
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the text similarity between new bug reports and multiple existing reports to predict
whether the new bug report is a duplicate bug. This approach trains a support vector
machine classifier with repeated reports to learn the similarities. Feng et al. (2013)
proposed profile information of the bug reporter to improve accuracy of the existing
approaches in detecting duplicate bugs.

DupFinder (Thung et al. 2014) is an integrated duplicate bug report detection tool,
implemented as a Bugzilla extension. The tool uses texts from summary and descrip-
tion fields of a new bug report and recent bug reports present in a bug tracking system,
employees vector space model to scale the bugs similarity and lists duplicate bug
reports based on the similarity of these reports with the new bug report.

Suchmachine learning based approaches suggest that it is viable to apply the super-
vised machine learning classifiers to the problem of predicting approval or rejection
of the software enhancement reports. The existing approaches of the software docu-
ments classification have shown high performance. However these approaches are not
designed to handle the approval prediction of software enhancement reports.

3 Approach

3.1 Overview

The proposed approach in this paper predicts whether a new enhancement report will
be approved or rejected. We define the problem of the enhancement report approval
prediction as the machine learning based binary classification problem that classifies
the new enhancement reports into two classes: approved and rejected. The classifica-
tion function f to predict a new enhancement report r into a classification category c,
is given by

c = f (r); c ∈ {approve, reject} , r ∈ R (1)

where c is the outcomeclasswhich canbe either approve or reject, f is the classification
function that predicts the approval of the report and r is the new enhancement report
input to the classifier. The classification function f is obtained by training a supervised
learning classifier.

Typically there are more than two types of resolutions for enhancement reports on
an issue tracking system. However, only the Fixed resolution issues are approved for
implementation. Rest of the reports with other resolution types are not approved due
to reasons like duplicate or invalid enhancement. Thus we classify Fixed type reports
as approved while the rest as rejected.

Overview of the approach is presented in Fig. 1. The proposed approach to predict
the approval of the enhancement reports has two main phases. In the first phase,
the enhancement reports are acquired, preprocessed and modeled. Such enhancement
reports are extracted from an issue tracking system. The issue tracking systems usually
provide interfaces to access the reports from their repositories. The enhancements
reports in the corpus are preprocessed with case conversion, non-dictionary words
removal and lemmatization. Each report is then converted into a feature vector form.
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Fig. 1 Supervised prediction approach

In the second phase, a classifier is trained to classify new enhancement reports. The
vectors of enhancement reports and their corresponding labels are used to train the
classifier. The resulting classifier is then applied to vectors of new enhancement reports
to predict the approval or rejection of each test report.

3.2 Data collection and preprocessing

The bug reports data is usually stored and managed on issue tracking systems. An
issue tracking system keeps track of software application issues, allowing the users to
submit issue reports for software, and also lets developers collaborate on those issue
reports by making comments. There are quite a few standard issue tracking systems
out there. Some of the most famous and widely used of them include Redmine, Jira
and Bugzilla. Jira is a commercial license based application so we did not consider
using the system for our evaluation. We chose Bugzilla in our evaluation since it is
one of the most popular issue tracking systems for open-source applications.

3.2.1 Raw enhancement reports

The enhancement reports are acquired from Bugzilla. An enhancement report submit-
ted to issue tracking system has many attributes associated with it. Figure 2 shows
a graphical view of an enhancement report of an application submitted to Bugzilla.
Some of the attributes of an enhancement report include identification number, title,
the product for which the report is submitted, time stamps when it is reported and
modified, reporter, developer assigned to resolve the issue, resolution, description
of the report, and additional comments. The resolution status of the report indicates
whether the enhancement has been approved or rejected. The first comment contains
the description of the enhancement requested.

In our approach, the text features are selected from the enhancement reports’
description for the approval prediction. The lexical description defines what feature
enhancement is requested and thus is an essential parameter for approval decision.Thus
our approach is based on the lexical description of enhancement request. Approaches
on different bug classification tasks using textual features as input have shown reliable
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Fig. 2 Sample enhancement report
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performance, suggesting that these text features are effective in the issue reports classi-
fication (Lamkanfi et al. 2011; Roy and Rossi 2014a; Xuan et al. 2017). Other factors,
e.g., available resources, budget, and business concerns are also essential parameters
of approval decision. However, it is challenging to retrieve and quantify such factors
from a large number of applications, and thus it is hard to figure out the quantitative
relationship between the approval decision and such factors.

3.2.2 Preprocessing

Preprocessing is an important step for text classification since it improves perfor-
mance of the classification approach (AKUysal 2014). The steps of preprocessing are
summarized in Fig. 3.
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A report is first tokenized into individual words. The report text is split on the
white spaces and punctuations to generate word tokens. The non-dictionary words are
removed from the word tokens obtained from tokenization. The resulting words are
converted into lower case. The words are then lemmatized to convert each word to
its dictionary base form. The letters in the words are normalized to lower-case form
so that the classifier treats as the same, a capitalized word and its non-capitalized
form. For instance, the word ’Edited’ is changed to ‘edit’ which is both the word’s
base (lemmatized) and lowercase form. The lemmatized words from all the reports
arranged in alphabetical order, are selected as the feature set.

An enhancement report is represented by a set of features to be processed by the
classifier. A feature selection scheme is important for the performance of a classi-
fier, that specifies criteria for measuring how informative each word is, to extract the
important features. Some machine learning based classifiers including naive Bayes
are sensitive to feature selection (Wei and Feng 2011; Chen et al. 2011).

For preprocessing and feature selection, we used the twinword-lemmatizer. a
lemmatization API1 to get the features from the reports’ text. A report is lemma-
tized and returned by the API in JSON format containing lemmatized word features
used in the report. The API performs the preprocessing steps of words tokenization,
non-dictionary words removal, lower-case conversion and lemmatization. The punctu-
ations and the numbers used in the original reports are eliminated in the lemmatization
process. The lemmatized reports are saved and subsequently used for the feature vector
modeling of reports. The words from all the lemmatized reports are saved in the fea-
tures vocabulary. The vocabulary contains each unique word occurring in the reports
dataset.

Text classification often involves high dimensional and sparse data features (Su
et al. 2011). Lemmatization reduces the number of features and thus the size of feature
vectors. Reduction of the feature vectors size improves the efficiency of the approach.
Using lemma form of words reduces the chances of a word occurring in the training
set in one form, but occurring in test report in another form, thus being treated as two
different features.

3.3 Vector space model

The textual reports are converted into feature vector space model (Yang et al. 2012),
which is a compact representation consisting of all the unique features extracted from
the enhancement reports. Each report in the lemmatized reports corpus is converted
into a vector according to the feature vector model. The mapping process is applied
to both the training and test reports in the corpus.

A feature vector v is defined as,

v = {c, f1, f2, . . . fn} (2)

1 https://twinword-lemmatizer1.p.mashape.com/extract/, verified 03/03/2016.
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where v is the feature vector representing an enhancement report d, c is the class label
that takes either 1 or 2 value identifying whether the report is approved or rejected
respectively, and f1, f2, . . . fn are the set of features each corresponding to the words
in the features vocabulary.We use term frequency (TF) to represent features in a feature
vector. If a feature is present in the report, it is represented by the number of times
(N) it appears in the report, otherwise it is represented by 0 according to the following
condition

fi =
{
0, if ith feature is absent

N , if ith feature appears; N > 0
(3)

The feature number i is the feature’s respective index number in the lemmatized
unique words list created from the lemmatized reports corpus. The input vectors to
the classifier are report feature matrix where the columns are the features and rows
are the report vectors (Chen and Lü 2006). We model all the reports according to the
Eq. 2.

3.4 Multinomial naive Bayes classifier

The classification method has a significant impact on the accuracy of the text classi-
fication approach (Tan et al. 2011). Given a set of reports (d1, . . . , dn), each report
represented by the features vector v and belonging to a known class c, the aim is to
construct a classification model f that allows to assign new unlabeled enhancement
report to a class c (Zhang et al. 2015).

The multinomial model is considered better and efficient classification model than
the multi-variate Bernoulli model (Wang et al. 2014). Multinomial naive Bayes keeps
track of the frequency of words in the feature vectors representing the reports (Jiang
et al. 2013; Eberhardt 2015). For a test report d, represented by feature vector <
w1, w2, . . . , wn >, multinomial naive Bayes uses the equation below to classify the
report.

cMNB(d) = P(c)
n∏

i=1

P(wi |c) fi (4)

where P(c) is the prior probability that the report d occurs in the class c, n is the number
of features, wi is the i th word occurring in the report d, P(wi |c) is the conditional
probability that the word wi occurs in the class c, fi is the frequency count of word
wi in the report d, C is the set of all possible class labels c and cMNB(d) is the class
label of the report d predicted by multinomial naive Bayes.

P(c) of a class c is the prior probability of the class. If Ndoc is the total number
of training reports belonging to class c and Tdoc is the total number of reports in the
corpus, then P(c) is calculated as,

P(c) = Ndoc

Tdoc
(5)
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Each report belonging to a category c is grouped into respective class. The multi-
nomial Bayes classifier computes the frequency of the word wi in all the reports of
each class to get the maximum likelihood estimate of the probability for a class as,

P(wi |c) = count (wi , c)∑
w∈v count (w, c)

(6)

Murphy and Cubranic (2004) used the set of text words that form the bug report’s
summary and description fields. Authors used term frequency of words in the text
to model them into vector form and applied multinomial naive Bayes classifier to
automatically assign bug reports to relevant developers. Their framework treats the
dataset as a collection of documents D and each document has a class label c from a
set of predefined classes. Although the naive Bayes feature independence assumption
does not apply inmany real-world situations, yet empirical results suggest the classifier
performs optimally considering the assumption not entirely unreasonable (Domingos
and Pazzani 1997).

Despite the simplified assumption of features independence, the naive Bayes clas-
sifiers are shown to have sound theoretical reasons for their competitive performance
(Zhang 2004). Decoupling of the class conditional feature distributions makes it pos-
sible for each of the features to be estimated independently as a one-dimensional
distribution. Since our dataset has spacial feature space, this property of Bayes based
classifier handles the problems of sparseness and high dimensionality, such as the need
for datasets that scale directly in proportion with the number of features. Furthermore,
the classification accuracy of the naive Bayes classifier is not directly affected by
the degree of feature dependencies measured in terms of the class-conditional mutual
information between features (Rish 2001). Such characteristics of naive Bayes model
apply to our dataset and the binary classification problem, making it optimal in our
approach.

4 Evaluation

4.1 Overview

The enhancement reports acquired from Bugzilla are preprocessed and converted to
feature vectors.Weapplied differentmachine learning classifiers to train onour dataset.
The training models learned from the classifiers training are applied to the test dataset
to evaluate performance of the approach.We further evaluate the performance of neural
networks and deep learning algorithms on our dataset. It turns out that with relatively
small size of our dataset, the neural network performs poor than multinomial Naive
Bayes, but if the dataset size is large, the algorithm can outperform the multinomial
Naive Bayes classifier. The approach based on textual word features outputs effective
results since the report text is the gist of requested feature enhancement.

The original enhancements dataset acquired from Bugzilla is imbalanced which
may affect classifiers performance. To compare the performance with original imbal-
anced dataset, we also performed re-sampling of the dataset by under-sampling the
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reject class since it is almost three times the approve class. To perform the re-sampling,
wemade the number of rejected reports in each application nearly equal to approved by
removing extra reports. For instance,Bugzilla application had2197 approved reports in
the original dataset, and 3537 rejected. After under-sampling the reject class reports,
we only selected initial 2197 rejected reports while discarding the remaining 1340
reports. The dataset after re-sampling has total 21,317 reports with 11,072 rejected
reports making it roughly balanced. We compare the original dataset results against
re-sampled data in our approach.

4.2 Research questions

While evaluating the proposed approach, we address the following research questions.

– RQ1: How accurate are different machine learning algorithms in predicating
approval, and which one is best?

– RQ2: Can re-sampling techniques improve the performance of the approach? If
yes, to what extent?

– RQ3: Which words should be avoided to increase the likelihood of approval?
– RQ4: How long does it take to train the classifier and to classify new reports?

The research question RQ1 evaluates performance and reliability of our approach
in predicting a new report’s approval using different machine learning algorithms,
i.e., multinomial naive Bayes, decision tree, random forests, logistic regression, and
neural networks. Such techniques are selected for comparison as they are popular and
accurate in binary classification of text documents (Lamkanfi et al. 2010; Wu et al.
2008; Hu et al. 2014).

Research question RQ2 evaluates the performance of our Bayes based approach
on the re-sampled dataset to assess the effects of balanced classes on classification
performance. We perform and compare re-sampling on our full dataset since it is
imbalanced with approximately 75% of the reports are rejected, which may affect the
classifiers’ bias towards overrepresented class.

To help improve writing new enhancement reports, in research question RQ3 we
explore the affects of words on resolution of the reports. We estimate the likelihood
of different words affecting the reject probability of the enhancement reports.

The research question RQ4 measures the time factor of the approach for training
and approval prediction. We include the time measure due to three reasons. First, a
larger number of reports may take a long training time. Some supervised machine
learning techniques, especially neural networks and deep learning algorithms take a
long training time when dataset size is large, so this factor becomes more relevant in
the evaluation. Second, for classification, the goal is to classify instantly once a new
report is submitted. A quick prediction result can save time going through the report
manually. Thirdly, large and complex software systems may receive the enhancement
requests frequently and the developers may have limited time. In this case, if the
approach is computationally complex, it may consume a lot of computing resources
which would be ineffective to handle a large number of enhancement reports.
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4.3 Dataset

4.3.1 Data retrieval

We extracted the enhancement reports of open-source software applications from
Bugzilla,2 a general-purpose bug and issue tracking system. Using the Bugzilla REST
API,3 we wrote nodejs based code (available online4) to access the enhancement
reports by specifying the severity level as enhancement in the Bugzilla REST API.
The severity type of enhancement in the URL filters the feature enhancements from
the bug reports, thus retrieves only enhancement reports. Next, detailed description of
an enhancement, which is in the first comment of an enhancement report, is separately
extracted using the report ID.5 We treat this detailed description as the enhancement
report because this field describes the requested enhancement by the suggester. We
only used the enhancement reports which have been resolved as either fixed or not
fixed, discarding the open reports that are not yet decided.

The data acquired is saved in database with appropriate fields for each of the fields
of reports retrieved, including ID, product, resolution, description and others. The
data retrieved from Bugzilla are reported between 1997-09-10 to 2016-07-13, for the
subject applications.

The resolution field returned in an enhancement report from the Bugzilla API
specifies whether the enhancement report is approved or rejected. In Fig. 2, resolution
is presented as the Status field. If the resolution resulted in a change to the code base,
the enhancement report is resolved as fixed. A report is resolved as invalid if it is not a
proper enhancement. A report is expired if it is in needinfo status requiring additional
information, and the reporter fails to provide the relevant information for more than six
months. Since there are multiple resolutions of the reports, we reduce this multi-class
resolution problem to binary classification problem by treating a report as approved if
its resolution is fixed and categorize rejected otherwise. Note that we do not include
the new reports in the dataset whose resolution is not defined since we are not sure
whether they will be approved or rejected.

Some of the widely used standard issue tracking systems include Redmine, Jira
and Bugzilla. Jira is a commercial license based application so we did not consider
using the system for our evaluation. These systems do have many peculiar features
of their own but the common life cycle of bug reports is more or less similar. Since
our approach is based mainly on the enhancement report text, choosing one issue
tracking system over the other would not have a bug affect on performance. We chose
Bugzilla in our evaluation since it is one of the most popular issue tracking systems
for open-source applications including projects like Firefox. Bugzilla also provides a
REST API to easily access the bug reports.

2 https://bugzilla.mozilla.org/, verified 26/02/2016.
3 https://bugzilla.mozilla.org/rest/bug?severity=enhancement, verified 26/02/2016.
4 https://github.com/shanniz/Bugzilla.
5 https://bugzilla.mozilla.org/rest/bug/426904/comment, verified 26/02/2016.
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Table 1 Top 10 open-source applications with most enhancements used in evaluation

Application Total reports Domain Approved Rejected

SeaMonkey 7922 Internet application suite 883 7039

Core 7223 Shared web browser components pack 2754 4469

Firefox 6793 Web browser 896 5897

Bugzilla 4696 Issue tracking system 2197 2500

Thunderbird 3934 Email client 398 3536

MailNews Core 2050 Mail and news components 376 1674

Toolkit 1678 API services to XUL applications 380 1298

Calendar 1505 Integrated scheduling calendar 439 1066

Camino Graveyard 1168 Legacy Mac OS X browser-only project 344 824

Core Graveyard 1026 Legacy Core components 259 767

The significance of an issue report on Bugzilla is a composite of its priority and
severity levels. The priority for an issue is decided and set by the maintainers or
developers who plan to work on the bug. General to issue tracking systems and specific
to Bugzilla, the priority can have the values of Immediate, Highest, High, Normal and
Low. Bugzilla allows to set these priorities with values from P1 to P5 respectively. The
severityfield defines the nature offiled issue report in an issue tracking system.Bugzilla
specific types of severity for an issue report areBlocker,Critical,Major,Normal,Minor,
Trivial and Enhancement. Except for enhancement type, other categories of severity
are bugs. The enhancement type issue is a request for a new feature or modification
in functionality of an existing feature. The severity field gives a high level view of the
nature of an issue report and combined with priority field further signifies importance
to resolve the issue.

For themost part, the domain of open-source applications obtained fromBugzilla is
desktop applications for Internet. The top applications with most number of enhance-
ment reports along-with the number of approved and rejected reports in our dataset
are summarized in Table 1. The full list of applications, their domains and number of
reports used in the evaluation are available online.6 More details and wiki for these
applications are accessible online. 7

4.3.2 Reports’ status

The reports extracted for the evaluation have their status verified or closed. Since for
supervised classification system, the data has to be pre-classified, we extracted the
enhancements which have already been resolved by the developers as approved or
rejected.

The resolution of an enhancement request is specified in resolution field. A total
of 8 types of resolution are possible for the enhancement reports in Bugzilla. They

6 https://github.com/zeeshanniz/enhancement.approval.prediction, verified 30/08/2017.
7 https://wiki.mozilla.org/Bugzilla_Products, verified 30/08/2017.
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Table 2 Number of reports for
each resolution type

Resolution Number of reports

FIXED 11,072

INVALID 2656

DUPLICATE 16,233

WONTFIX 7186

WORKSFORME 2540

INCOMPLETE 615

EXPIRED 1329

MOVED 4

include DUPLICATE, EXPIRED, FIXED, INCOMPLETE, INVALID, MOVED,
WONTFIX, WORKSFORME. Since only the FIXED enhancements are approved
for implementation, leaving the rest unimplemented, we classified a report as fixed if
its resolution is fixed, and classified non-fixed for other resolutions. Thus we have only
two classes of reports reducing the problem to binary classification. The total number
of enhancement reports in our dataset fromBugzilla, for each type of report is shown in
Table 2.

4.4 Metrics

We use accuracy, precision, recall and f1-score to evaluate performance of the classi-
fiers. Accuracy measures the proportion of all correct predictions. Precision calculates
the number of actual true positive outcomes out of all positive predictions. Recall mea-
sures the number of true positives returned by classifier from the total number of true
positive cases. F1-score is the average of precision and recall.

Mathematically, these metrics are defined as follows

Accuracy = (TP + TN)

(TP + FN + FP + TN)

Precision = TP

(TP + FP)

Recall = TP

(TP + FN)

F1-Score = 2 ∗ (Precision ∗ Recall)

(Precision + Recall)

where TP (True Positive) is the number of approved reports predicted as approved.
TN (True Negative) is the number of rejected reports, predicted correctly. FN (False
Negative) is the number of approved reports predicted as rejected. FP (False Positive)
is the number of rejected reports predicted as approved. The experimental evaluation of
the approach is performed on the systemwith the hardware and software specifications
shown in Table 3.
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Table 3 System configuration
for evaluation

Resource Configuration

Processor Intel® CoreT M i5-7200U CPU @ 2.50G x 4

RAM 16 GB

OS Ubuntu 16.10, 64-bit

Kernel 4.8.0-46-generic Kernel

4.5 Process

The evaluation is carried out as follows. First, we retrieve all enhancement reports
(notated as ER) from Bugzilla. Second, based on ER, we carry out a tenfold cross
validation. We randomly partition ER dataset into ten equally sized groups notated as
Gi (i = 1 . . . 10). For the i th cross-validation, we consider all reports except for those
in Gi as the corpus of training data, and treat the reports in Gi as the testing data.

For the i th cross-validation, the evaluation process is as follows:

1. First, we extract all reports trainingDatai from training dataset that is the union
of all groups but Gi .

trainingDatai =
⋃

j∈[1,10]∧ j �=i

G j (7)

2. Second,we train aBayes based classifier (BasCl f )with data from trainingDatai .
3. Third, we train a Support Vector Machine based classifier (SV MCl f ) with data

from trainingDatai .
4. Fourth, we train a Random Forest based classifier (RFCl f ) with data from

trainingDatai .
5. Fifth, we train a Logistic Regression based classifier (RFCl f ) with data from

trainingDatai .
6. Sixth, for each report in Gi , we predict its approval with the resulting Bayes based

classifier (BasCl f ), SVMbased classifier (SV MCl f ), RandomForest based clas-
sifier (RFCl f ) and Logistic Regression based classifier (RFCl f ) and compare
the results against its actual (correct) status.

7. Finally, we compute accuracy, precision, recall and f1-score for each of the clas-
sifiers.

It should be noted that we do not train different classifiers for different applications
because the data from a single application is usually too small for training, and thus
inner-application prediction may be less accurate than inter-application prediction.
In other words, we would make prediction based on the same resulting classifier for
different applications.
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Table 4 Ten-fold cross validation (Multinomial Naive Bayes)

Iteration TP FP TN FN Accuracy (%) Precision (%) Recall (%) F1 (%)

1 666 138 2697 498 84.09 82.83 57.81 68.09

2 472 144 3162 251 82.83 80.54 65.28 72.11

3 348 109 3258 284 90.17 76.14 55.06 63.90

4 256 44 3341 358 89.94 85.33 41.69 56.01

5 265 52 3381 301 91.17 83.59 46.81 60.01

6 556 90 3011 342 89.19 86.06 61.91 72.01

7 776 107 2825 291 90.04 87.88 72.72 79.58

8 830 122 2698 349 88.22 87.18 70.39 77.89

9 1060 139 2484 316 88.62 88.40 77.03 82.32

10 1692 149 1917 241 90.24 91.90 87.53 89.66

Average 692.1 106.4 2877.4 323.1 89.25 84.99 63.26 72.53

4.6 Results

4.6.1 RQ1: Accuracy of different machine learning algorithms in predicating
approval

Multinomial naive Bayes, support vector machine, decision tree and neural networks
are among the widely used supervised machine learning classification algorithms in
text due to their competitive performance (Wu et al. 2008; Sohrawardi et al. 2014).
The results of applying these classifiers on the approach revealed that the multinomial
naive Bayes classifier yields most accurate results on our dataset (Table 4).

Naive Bayes algorithm achieves competitive classification performance, even
though its basis of conditional independence assumption is not often true. In our
dataset, the classifier achieves optimal performance. Zhang (2004) argues that the
way local dependence of a feature distributes in each class, and how the local depen-
dencies of all features work together, consistently or inconsistently, dictates whether
the dependencies distribute evenly in classes, or they cancel each other out. The naive
Bayes algorithm is optimal given dependencies are evenly distributed in classes, or
they cancel each other out. Apart from that, the naive Bayes is further evaluated for
Spam email detection (Zhang and Li 2007), which show that the algorithm is effective
in binary classification problem. These works support our application of naive Bayes
and its optimal performance on our binary classification problem.

Despite it’s simplicity, the C++ implementation ofmultinomial naive Bayes8 classi-
fier produced accurate prediction results on tenfold validation test. The implementation
uses multinomial event model and the maximum likelihood estimate with a Laplace
smoothing technique to learn the parameters. The classifier misclassifies a few reports

8 http://www.openpr.org.cn/index.php/NLP-Toolkit-for-Natural-Language-Processing/43-Naive-Bayes-
Classfier/View-details.html, verified 13/05/2016.
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Fig. 4 Accuracy of the approach
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Fig. 5 Precision of the approach

in tenfold cross validation. The misclassifications are mostly false negatives due to the
more rejected reports in dataset.

The naive Bayes classifier algorithm is proven effective in many applications
including the binary text classification (Hellerstein et al. 2000). Figures 4, 5, 6 and 7
compare the performance of support vector machine, random forests, logistic regres-
sion and multinomial naive Bayes classifiers over accuracy, precision, recall and F1
performance parameters respectively showing that themultinomial naiveBayes imple-
mentation outperforms the compared algorithms in all performance metrics.

Support vectormachineSupport vectormachine is another classifier showneffective
in text classification (Zaghloul et al. 2009). We trained the support vector machine
classifier implementation called SV Mlight .9 The classifier implementation canprocess
hundred thousands of training vectors and handle some thousands of support vectors.
The parameter c is the trade-off between training error and the support vector margin.
The parameter c value of 20.0 is used in the classifier training. Table 5 presents the
performance of support vector machine classifier on tenfold cross validation. Total

9 http://svmlight.joachims.org, verified 27/05/2016.
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Fig. 7 F1-Score of the approach

number of the reports in one set is 4000. Thus each training dataset has 36,000 reports
while a single test set has 4000 reports.

The decision tree10 algorithm performed poor in the evaluation. The classifier ran
out ofmemory on our system,without generating the classificationmodelwhile trained
on the training dataset in the tenfold validation.We excluded the decision tree classifier
from the evaluation due to its poor performance.

Random forest and logistic regression Random forests and logistic regression have
been shown prominent in certain software bug handling studies (Xia et al. 2015; Val-
divia Garcia and Shihab 2014; Antoniol et al. 2008). For this reason, we assessed the
performance of algorithms with same evaluation metrics and tenfold cross validation.
We used the same aggregate dataset of all the 35 subject applications’ reports text
modeled as feature vectors. The results of applying these algorithms on our dataset
were not as effective compared to Bayes based classification model. Random forest
classifier exploits ensemble learning technique. The standard implementation from
sklearn.ensemblemodule for RandomForestClassifier was evaluated for cross valida-

10 https://github.com/yandongliu/learningjs, verified 20/05/2016.
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Table 5 Ten-fold cross validation (Support Vector Machine)

Iteration TP FP TN FN Accuracy (%) Precision (%) Recall (%) F1 (%)

1 150 159 2640 984 70.53 48.00 15.46 23.38

2 96 154 3092 601 80.38 39.87 16.87 23.70

3 93 157 3159 512 81.97 36.59 18.96 24.97

4 72 72 3301 522 84.85 52.27 14.98 23.28

5 66 69 3352 469 86.22 54.49 17.11 26.04

6 141 100 2983 707 79.35 61.81 21.25 31.62

7 195 129 2777 807 75.95 62.65 24.37 35.09

8 237 133 2643 831 74.80 66.35 29.58 40.91

9 261 152 2427 950 71.35 68.49 30.96 42.64

10 389 141 1893 1349 61.95 77.15 30.21 43.41

Average 170.0 126.6 2826.7 773.2 76.73 56.76 21.97 31.50

Table 6 Ten-fold cross validation (Random Forests)

Fold TP FP TN FN Accuracy (%) Precision (%) Recall (%) F1-Score (%)

1 370 394 2654 746 72.62 48.42 33.15 39.36

2 360 430 2618 756 71.51 45.56 32.25 37.77

3 380 425 2623 736 72.11 47.20 34.05 39.56

4 359 453 2595 757 70.94 44.21 32.16 37.24

5 364 421 2627 752 71.82 46.36 32.61 38.29

6 381 435 2613 735 71.90 46.69 34.13 39.44

7 361 418 2630 755 71.82 46.34 32.34 38.10

8 386 451 2597 730 71.63 46.11 34.58 39.52

9 385 430 2618 731 72.11 47.23 34.49 39.87

10 358 411 2637 758 71.92 46.55 32.07 37.98

Average 370.4 426.8 2621.2 745.6 71.84 46.47 33.18 38.71

tion scores. Table 6 shows the performance of random forest classifier. The average
for accuracy, precision, recall and f1-score are respectively 58.07, 58.50, 70.18 and
63.81% over ten folds cross validation.

Table 7 summarizes the performance of logistic regression classifier from sklearn
library. The algorithm outputs an average accuracy of 71.36%. However, it does not
perform optimally in terms of precision, recall and f1-score which on average are
respectively, 41.38, 27.74 and 31.94% over ten folds cross validation.

To investigate whether there is essential difference between the accuracy of the
Bayes based approach and the accuracy of alternative classification techniques, we
apply ANOVA analysis on their resulting accuracy in tenfold evaluation (ten differ-
ent accuracy values for each of the techniques). The results of ANOVA analysis are
shown in Table 8. For each of the comparisons present in the table, F > Fcric and
Pvalue < (alpha = 0.05). These results suggest that the factor (different clas-
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Table 7 Ten-fold cross validation (Logistic Regression)

Fold TP FP TN FN Accuracy (%) Precision (%) Recall (%) F1-Score (%)

1 423 778 2018 781 61.02 35.22 35.13 35.17

2 286 775 2468 471 68.85 26.95 37.78 31.46

3 211 623 2742 424 73.82 25.29 33.22 28.72

4 106 242 3145 507 81.27 30.45 17.29 22.06

5 116 246 3181 457 82.42 32.04 20.24 24.81

6 239 265 2813 683 76.30 47.42 25.92 33.52

7 294 313 2630 763 73.10 48.43 27.81 35.33

8 301 274 2540 885 71.02 52.34 25.37 34.18

9 354 254 2397 995 68.77 58.22 26.24 36.17

10 527 390 1753 1330 57.00 57.47 28.37 37.99

Average 285.7 416.0 2568.7 729.6 71.36 41.38 27.74 31.94

Table 8 ANOVA analysis on accuracy

Source of variation SS df MS F P value F critical

MNB versus SVM

Between groups 0.070590962 1 0.070590962 22.22338 0.000172997 4.413873419

Within groups 0.057175686 18 0.003176427

Total 0.127766648 19

MNB versus RF

Between groups 0.140767420 1 0.140767420 317.9988106 6.90912E-13 4.413873419

Within groups 0.007967997 18 0.000442667

Total 0.148735417 19

MNB versus LR

Between groups 0.1489538 1 0.1489538 40.73390441 5.20036E-06 4.413873419

Within groups 0.065821542 18 0.003656752

Total 0.214775342 19

sification techniques) did cause significant difference in resulting accuracy, and the
multinomial naive Bayes based approach results in best performance.

The distribution of accuracy over tenfold cross validation for multinomial naive
Bayes, support vector machine, random forests and logistic regression is presented in
Fig. 8. A beanplot plots the beans, one bean per group to compare the distributions
of different groups. A bean is a one-dimensional scatter plot consisting of the data
distribution as a density shape. The accuracy of individual folds are represented as
horizontal lines within the bean whereas the average accuracy is represented as the
longer line across the bean. The shape of the bean is the density, and the longer bold
line represents the average accuracy of each classifier over tenfold cross validation.

As observable in Fig. 8, the multinomial naive Bayes classifier exhibits a high
accuracy and a small deviation in the values through the different folds of tenfold
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Fig. 8 Accuracy distribution of the approach

validation.Random forest classifier shows a consistent but lower accuracy as compared
to multinomial naive Bayes model. Support vector machine classifier and logistic
regression do not show consistency in accuracy across different folds of tenfold cross
validation and a relatively lower performance as compared to the multinomial naive
Bayes classifier. The bean-plot suggests that the lowest accuracy of multinomial naive
Bayes is still comparable to the highest accuracy of support vectormachine and logistic
regression in the tenfold cross validation.

We conclude the preceding analysis that multinomial naive Bayes classifier outper-
forms other classification models in the approval prediction of enhancement reports.
The Bayes is an effective model for text classification and the proposed approach is
also based on the text. Another possible reason is that the naive Bayes classifier is more
effective for binary classification than multi-class classification (Rish et al. 2001), and
the proposed approach classifies the reports into two classes only.

The relatively lower recall rate inmultinomialNaiveBayes is a result ofmore reports
beingmisclassified as rejected. Applying an scaling factor s to the posterior probability
of approve class to increase its probability can be used to adjust the precision and recall
of the approach. A developer can choose to have either higher precision or recall for
the reports depending on which is more important to him, by scaling the class weight
accordingly. With the scaling factor, posterior probability of a class (e.g. approve)
becomes

P(approve) = s ∗ P(approve) (8)

Figure 9 shows the effect of applying the scaling factor s values between 1.001 to
1.019 with step size of 0.003. The average results of the tenfold validation on Bayes
based approach show that the precision improves as a result of applying more weight
to the approve class posterior probability due to less number of false negative or reject
classifications. Thus there is a trade-off between precision and recall with the change
in scaling factor value.

Comparing against deep learning algorithms To get more optimal performance,
we applied Deep Belief Networks (DBN) for deep learning and compared it with
the Multi-Layer Perceptron (MLP),11 a neural network algorithm. The deep learning

11 http://deeplearning.net/, verified 10/08/2016.
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Fig. 9 Effect of scaling the class probability on the performance

algorithms require compact representation of the data for better performance. The
paragraph vector algorithm (Le and Mikolov 2014) generates fixed length feature
representation from text reports of varying lengths. We applied the paragraph2vec
implementation (Liu et al. 2015) of the algorithm to convert the enhancement reports
into feature vectors. Since the algorithm allows to generate feature vectors with any
number of dimensions, we tried and found that 100-dimensional feature vectors are
applicable without any performance reduction.

The dataset we used for deep learning contains set of pairs (yi , xi ), where xi is the
compact representation of the report text (100-dimensions vector) and yi is the label
(0 or 1) associated with the report. We divide the dataset into training and validation
sets. The dataset is divided into ten parts. One part forms the validation set while the
remaining parts form the training set.

We built a deep belief network (DBN), with an input layer of 100 neurons, three
hidden RBM layers of 1000 neurons each, and a logistic regression output layer of 2
neurons. Since a DBN has many possible configurations and parameters, we applied
different learning rates and mini-batch sizes according to our dataset and feature
vectors. The network was trained with the report vectors from paragraph to vector
algorithm. The parameters used in training DBN were; learning rate of 0.1, training
epochs were 1000, and batch size of 10. DBN performed poor with the validation
error 77.87% on our dataset of 40,000 reports. Furthermore, the performance of the
algorithm was not consistently improving as we tried different sized datasets. The
classifier takes relatively higher training and classification time of 187.8 and 1.021
seconds respectively.

We built multilayer perceptron (MLP) with an input layer of 100-dimensions, a
hidden layer of 1000 sigmoids, and a logistic regression classifier layer which outputs
one of the two classes. The first input layer takes the reports feature vectors as input and
forwards it to the hidden layer for themodel parameters optimization. Finally the output
logistic regression layer uses the hidden layer activations for final binary classification.
It turned out during evaluations that with the given dataset, the performance of the deep
learning approach is lower than the multinomial naive Bayes based approach. Since
deep learning approaches usually require large sized dataset to get better performance,
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Table 9 Multi-layer neural
network performance
improvement with respect to
dataset size

Dataset size Error rate (%)

10,000 28.50

15,000 25.46

20,000 25.45

25,000 22.76

30,000 20.56

35,000 20.45

40,000 18.92
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Fig. 10 Validation accuracy extrapolation for neural network based approach

we tested different sized subsets of our original corpus to observe if the results improve
with increasing dataset size. The MLP algorithm has shown improvement as we used
increasing size of the dataset.

Table 9 shows that the validation accuracy of MLP gradually increases with the
increasing dataset size. DBN’s performance, however, does not exhibit consistency
with the increasing dataset size. We extrapolated the validation accuracy of MLP for
larger dataset size using the forecast function in R. The forecast method uses ARIMA
modeling to extrapolate the values. Forecast is a generic function for forecasting from
time series models. We used 30 periods for forecasting 30 data-points with intervals
of 5000 records.

The result of extrapolation in Fig. 10 (the blue dotted line is the actual dataset accu-
racy, red line is extrapolated accuracy) shows that for a dataset of 140,000 reports,
the accuracy of MLP equals the accuracy of the Bayes based approach. The extrap-
olation of doubled dataset size of 280,000 reports suggests that the output of the
neural networks based approachwould be 94.19% accurate. This trend of performance
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improvement shows that if the dataset size is sufficiently large, the deep learning tech-
nique may outperform the multinomial Naive Bayes based approach.

Although a large sized training data may be difficult to obtain, but based on the
improvement trend proportional to increase in dataset size, we suggest to use the neural
network based approach formore accurate prediction of the enhancement reportswhen
large labeled dataset is available for training.

4.6.2 RQ2: Influence of re-sampling

Different ways of re-sampling include over-sampling the underrepresented class,
under-sampling the overrepresented class, or sometimes changing the classifier thresh-
old for one of the classes to give more weight to under-represented class or less weight
to over-represented class.We performed re-sampling of the dataset by under-sampling
the reject class since a large number of reports are rejected in our dataset. The result-
ing balanced dataset with proportionate approved and rejected reports is compared in
evaluation with the original imbalanced dataset.

To determine the influence of re-sampling, we evaluate the Bayes based approach
on the balanced dataset. Same reports drawing method is used as with the original
dataset from all the subject applications. Since our dataset is imbalanced with more
rejected reports, we performed under-sampling of rejected class to equal the number of
rejected reports to approved reports in training set. In the tenfold cross validation, only
the training fold was subjected to under-sampling with balanced number of reports of
both classes in each fold.

To under-sample the dataset of 40,000 reports, 36,000 reports were drawn as train-
ing set in each fold, and under-sampled to have equal number of approve and reject
reports. The under-sampling was performed by randomly eliminating the rejected
reports. Total number of rejected reports eliminated depends on the number of
approved reports in the training set. The resulting training set has half approved and
half rejected reports, where the total number of reports in each fold varies slightly,
since the number of approved reports in a fold varies and the total number of reports
become double of this number. The testing fold dataset of 4000 (10%) reports was
used unchanged with more rejected reports. The trained classifiers on re-sampled
datasets were evaluated on the original test set (not re-sampled). This technique is
applied to mimic the real test situation of more rejected reports in the issue tracking
system.

The tenfold cross validation results of multinomial naive Bayes based approach
with re-sampled reports dataset are presented in Table 10. Each row shows result of
the corresponding fold number in tenfold cross validation. The output of a fold are
total true positive, true negative, false positive and false negative predictions of the
fold, which are used to calculate the accuracy, precision, recall and f1-score of the fold.
The average accuracy of the approach is 81.66%, with precision, recall and f1-score
being 58.94, 89.68 and 70.51% respectively.

We further evaluated the classifiers on balanced training dataset with less number
of reports. Table 11 summarizes the average accuracy, precision, recall and f1-score
of the classifiers with under-sampled dataset. Each cell in the table shows perfor-
mance on balanced dataset along-with corresponding value in parenthesis for the full
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Table 10 Multinomial naive Bayes tenfold cross validation performance with re-sampling

Iteration TP FP TN FN Accuracy (%) Precision (%) Recall (%) F1 (%)

1 961 346 2449 243 85.27 73.52 79.81 76.54

2 626 339 2903 131 88.24 64.87 82.69 72.70

3 489 322 3043 145 88.32 60.29 77.12 67.68

4 510 364 3023 102 88.34 58.35 83.33 68.64

5 513 575 2851 60 84.12 47.15 89.52 61.77

6 871 785 2292 51 79.09 52.59 94.46 67.57

7 1021 931 2011 36 75.81 52.30 96.59 67.86

8 1157 939 1875 28 75.81 55.20 97.63 70.52

9 1320 1160 1491 28 70.29 53.22 97.92 68.96

10 1813 708 1435 43 81.22 71.91 97.68 82.84

Average 928.1 646.9 2337.3 86.7 81.66 58.94 89.68 70.51

Table 11 Average tenfold cross validation performance with and without re-sampling

Metrics MNB SVM RF LR

Accuracy (%) 81.66 (89.25) 76.70 (76.73) 55.43 (71.84) 50.31 (71.36)

Precision (%) 58.94 (84.99) 57.52 (56.76) 29.34 (46.47) 28.13 (41.38)

Recall (%) 89.68 (63.26) 21.51 (21.97) 56.37 (33.18) 63.23 (27.74)

F1-Score (%) 70.51 (72.53) 31.31 (31.50) 37.83 (38.71) 38.03 (31.94)

imbalanced dataset. The results suggest that re-sampling the enhancements corpus
does not improve accuracy of the approval prediction. In many cases, re-sampling is
a useful technique deal with the over-fitting problem due to skewed data. However,
in our case, it does not work well. We have not yet figured out exactly the reason.
One possible reason is that the chosen re-sampling technique is not suitable in our
case and in future replacing it with other re-sampling techniques may improve the
accuracy.

4.6.3 RQ3: Negative words

Lamkanfi et al. (2010) investigated the problem of predicting the bug reported as non-
severe or severe using naive Bayes classifier. The authors calculated probability of the
words in both severe and non-severe bug reports and found that the most appearing
significant words appear across different applications. Considering this finding, we
try to identify some words that are more likely to appear in each of the enhancement
reports classes.

We calculate the significance of eachword feature affecting the rejection likelihood.
The words likelihood of rejection is calculated in general for all applications without
calculating the likelihood for each individual application. The TF/IDF is a useful
technique to measure the significance of the words in a document. We sorted the
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Table 12 Some words with
highest reject probability Preject

Word Likelihood of getting
rejected (%)

Meaningless 87.50

Stupid 92.30

Awesome 90.37

Offensive 90.00

Receive 89.90

Reproduce 89.24

Crap 87.50

Funny 81.81

Monster 80.00

Guess 78.43

Suspect 76.19

words with highest occurrences in the enhancement reports according to TF/IDF. We
however, take all the reports belonging to the same class as a document to calculate
term frequency (TF) of the word and the entire set of reports in which the words
appear to calculate inverse document frequency (IDF). Sorting the words based on the
probability with this technique suggests that if the likelihood of a class is high, the
word has occurred in most of the reports of that class and thus affects the likelihood of
that particular class. Equation 9 depicts the formula to calculate the reject likelihood
of word.

P(wi , reject) = count(dreject, wi )

count(dtotal, wi )
(9)

where P(wi , reject) is the reject probability of wordwi , count(dreject, wi ) is the num-
ber of rejected reports in which the word appears, and count(dtotal, wi ) is the total
number of reports in which the word appears.

Table 12 lists the words that are frequently associated with rejected enhancement
reports. Most of such words are negative revealing the anger and satire of the reporters.
It is often difficult for reports with such feelings to specify the enhancement report
clearly, let alone providing constructive suggestions. Consequently, such reports are
more likely to be rejected. It is not to say that all the reports containing such words are
doomed to rejection, but that they are more likely to be rejected than those described
in a more constructive way.

4.6.4 RQ4: Time complexity of the approach

We calculate the time complexity of the approach by measuring enhancement reports
lemmatization time, and the training and testing times of the classifier. For lemmati-
zation, we measured and averaged the time of five lemmatization requests of the same
report. The time is measured by initializing the timer just before the call to the lemma-
tization RESTAPI server and stopping it just after the server response is received. The
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Table 13 Average training and
testing time of the classifiers in
seconds

Classifier Training time Testing time

Multinomial naive Bayes 0.3649 0.0798

Support vector machine 0.2483 0.0364

Random forest 1.6922 0.0143

Logistic regression 0.9072 0.0009

MLP 9.66 0.617

DBN 187.8 1.021

total time is calculated as the difference between the start and stop time interval. The
average time of the lemmatization over five iterations on our system is 2.18 seconds
which is a rough estimate of the actual lemmatization time since the lemmatization
API is an external program hosted online. The average time for lemmatization is
the combination of communication time (lemmatization request to the server and the
response time) and the time of text lemmatization process. The communication time
depends on the underlying network system, and is an important factor as it affects the
total execution time.

Tomeasure the execution time of the classifier training and prediction,we calculated
the average execution time of five trials on one fold for training and prediction of the
classifiers. The average time is calculated in seconds scale on our system with training
dataset of 36,000 reports and test dataset of 4000 reports. The results are depicted in
the Table 13.

The runtime timemeasures for the neural network based classifiers were performed
with the fixed parameters. The training time is higher for neural networks, and signif-
icantly higher in case of DBN as compared to MLP.

For training to generate the classifier, multinomial naive Bayes algorithm is most
time efficient compared to the other classifiers. While the logistic regression imple-
mentation is relatively fast in case of classification time.

The time and space complexity of naive Bayes classifier is linear to the number of
training reports and the number of features. Theoretically, the training time complexity
for the naive Bayes classifier is given by

O(|D|Ld + |C ||V |)) (10)

where Ld is the average length of report vector, |D| is the number of reports used
in training, |C | is the number of distinct classes of the reports and |V | is the feature
vectors size. The testing time for the naive Bayes classifier is given by

O(|C |Lt ) (11)

where Lt is the average length of a test report vector and |C | is the total number of
distinct classes to classify the reports.
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5 Threats and limitations

5.1 Threats to validity

5.1.1 Construct validity

First threat to construct validity is the accuracy of the labeled reports. We assume the
reports are correctly classified by the developers which may not be correct for all the
reports. Thus our training and testing may have slight inaccuracy. We only used the
reports that are resolved and closed to minimize this inaccuracy.

Second threat to construct validity results from the extrapolation of the deep learning
based approach, which may not be accurate. Since deep learning algorithms usually
require a large training dataset for better performance, but we have limited data, so
we extrapolate the results to observe expected results on more data. However, it is
possible that the actual performance may not be as good as shown in extrapolation.

5.1.2 Internal validity

First threat to the internal validity is that the lemmatization process of the enhancement
reports may be inaccurate. This inaccuracy is possible because a natural language
tends to be ambiguous and the words change over time which are possible problems
for lemmatization program. To counter this threat, we used one of the well known
and standard lemmatization API and cross-checked sample lemmatization outcomes
of the API with Stanford NLP library to validate the results.

Second threat to internal validity is that the deep learning algorithms have a number
of parameters to be adjusted and performance is influenced by the settings of such
parameters. These parameters include the initial weights, learning rate, activation,
number of layers in the network, and so on. Thus it is possible that the neural network
algorithms underperformed due to non-optimal parameters.

The third threat to internal validity comes from the approach being limited to only
two outcomes of resolution status. We treat a report as approved if its resolution is
fixed, and reject otherwise.

5.1.3 External validity

First threat to validity is the language of the enhancement reports. We evaluated the
approach on English based text of the reports. Since our approach is based on textual
features of an enhancement request on which a classification model is trained, the
performance may not be as effective in case of the reports written in other languages,
for instance in Chinese.

Second threat to external valid is that only one re-sampling technique was used
(Sect. 4.6.2). Since there are different data balancing techniques available, the per-
formance may be affected by the technique used. We chose under-sampling as it is a
standard re-sampling technique that limits itself within existing corpus and does not
require creation of new data.
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The third threat to external validity is that the evaluation is performed on the
applications from Bugzilla issue tracking system. Bugzilla allows to access a limited
number of open-source applications data. We therefore examined the performance of
our approach with a limited number of reports from the open-source applications. The
domain of these applications ismostly the Internet and desktop applications. Therefore
the approach may not perform well on other domains like smart-phone applications.
The evaluation on more applications may be conducted to reinforce the conclusions.

5.2 Limitations

The proposed approach is limited to text description of the reports. However, other
factors like available resources, business concerns, budget and reporters may also
influence the approval decision. Such factors are difficult to obtain and quantify, how-
ever, in future, these factor may be incorporated that may improve performance of the
approach.

The second limitation of the proposed approach is that it classifies the enhancement
reports into only two groups, the approved and non-approved. An enhancement report
can have a number of possible status like approve, reject, duplicate and invalid. We
treat all the reports that are not approved as rejected andmake no further classifications.
We make such a binary classification instead of multi-class classification because of
the following reasons:

1. First, the main purpose of the approach is to recommend those reports that are
likely to be approved and ignore others. Consequently, classifying the reports into
approved and non-approved is enough for the task.

2. Second, reducing the number of classes helps improve classification accuracy.

6 Conclusion

A majority of enhancement reports of the software applications on Bugzilla are not
approved which results in wastage of time in proposing and the manual evaluation
of these reports. The approach in this paper shows that it is possible to automati-
cally predict whether an enhancement report should be approved or rejected. It helps
enhancement reporter see beforehand if the report is likely to be approved or not. This
would translate to lower number of reports for developers to evaluate thus saving their
time.

Although, the reports need to be finally decided and implemented by the developers,
the proposed approach would help the reporters to forward better reports. This will
limit the number of proposed reports to the developer for evaluation. From developers
perspective, the automated predication approach is helpful in assisting the developers
rank more likely reports and resolve them first.

Our supervised machine learning based approach learns from the history data to
classify approved reports from rejected.We evaluated performance of the approach on
enhancement reports of open-source applications acquired fromBugzilla.Weconclude
that the prediction accuracy of the Bayes based approach is optimal given sufficient
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training data of two enhancement reports classes, with average precision and recall of
84.99 and 63.26% respectively.

We observed relatively low performance in certain test cases and observed that
some words affect the results accuracy. A weak point in the multinomial naive Bayes
classifier is that when one or more words appear in only one class in the training
dataset but occur in the other class in test dataset, it reduces the overall likelihood of
the actual class by the classifier. A smoothing factor is applied to minimize the effect
of such words. Furthermore, the imbalanced nature of the dataset may also affect the
classifier with biased results towards more occurring class.

An important resolution for enhancements is duplicate report. Although a requested
featuremay be good enough but duplicate of another enhancement, thus being rejected.
Duplicated bug report detection tools could be employed to remove duplicate reports
and thus avoid duplicate (and unnecessary) approval prediction. However, it is not
required for our approach to be filtered through duplicate detection first. The approach
works even if duplicate reports exist.

Some of the rejected enhancement requests may have used the words that did not
express the enhancement requirement clearly and constructively. Some of these words
are mentioned in Sect. 4.6.3 (Table 12). However, not all the requests with these terms
are rejected. The approval is not decided by a single word but usually with a group
of words. The reporter may change the keywords or use such words if necessary, in a
more clear and constructive way to make it more likely to be approved. Our predic-
tion approach therefore alerts the reporter before the request is actually submitted, to
improve chances of approval. Furthermore, it can save time of the software maintainer
by filtering more conceivable enhancement reports.

The evaluation results further show that the increase in dataset size reduces the
error rate in deep learning technique. We therefore conclude that the deep learning
algorithms may outperform the Bayes based approach when the dataset is sufficiently
large.

The proposed approach is merely based on the text description of an enhancement
report. However, other factors like available resources, business concerns, budget and
reporters may also influence the approval decision. In future, an enhanced prediction
model may incorporate such factors to improve performance of the approach.
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